Distribution, Abundance, and Diversity Patterns of the Thermoacidophilic “Deep-Sea Hydrothermal Vent Euryarchaeota 2”
نویسندگان
چکیده
Cultivation-independent studies have shown that taxa belonging to the "deep-sea hydrothermal vent euryarchaeota 2" (DHVE2) lineage are widespread at deep-sea hydrothermal vents. While this lineage appears to be a common and important member of the microbial community at vent environments, relatively little is known about their overall distribution and phylogenetic diversity. In this study, we examined the distribution, relative abundance, co-occurrence patterns, and phylogenetic diversity of cultivable thermoacidophilic DHVE2 in deposits from globally distributed vent fields. Results of quantitative polymerase chain reaction assays with primers specific for the DHVE2 and Archaea demonstrate the ubiquity of the DHVE2 at deep-sea vents and suggest that they are significant members of the archaeal communities of established vent deposit communities. Local similarity analysis of pyrosequencing data revealed that the distribution of the DHVE2 was positively correlated with 10 other Euryarchaeota phylotypes and negatively correlated with mostly Crenarchaeota phylotypes. Targeted cultivation efforts resulted in the isolation of 12 axenic strains from six different vent fields, expanding the cultivable diversity of this lineage to vents along the East Pacific Rise and Mid-Atlantic Ridge. Eleven of these isolates shared greater than 97% 16S rRNA gene sequence similarity with one another and the only described isolate of the DHVE2, Aciduliprofundum boonei T469(T). Sequencing and phylogenetic analysis of five protein-coding loci, atpA, EF-2, radA, rpoB, and secY, revealed clustering of isolates according to geographic region of isolation. Overall, this study increases our understanding of the distribution, abundance, and phylogenetic diversity of the DHVE2.
منابع مشابه
Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise ( 13 ∞ N )
To evaluate possible compositional changes in archaeal communities at a deep-sea hydrothermal vent field scale, we examined five different samples obtained after deploying in situ collectors for different times on three spatially separated venting sulphide structures on the East Pacific Rise (13 ∞ N). Direct cell counts and whole-cell hybridizations with fluorescently labelled 16S rRNA-based ol...
متن کاملGenetic diversity of archaea in deep-sea hydrothermal vent environments.
Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, ...
متن کاملEvolutionary and biogeographical patterns of barnacles from deep‐sea hydrothermal vents
The characterization of evolutionary and biogeographical patterns is of fundamental importance to identify factors driving biodiversity. Due to their widespread but discontinuous distribution, deep-sea hydrothermal vent barnacles represent an excellent model for testing biogeographical hypotheses regarding the origin, dispersal and diversity of modern vent fauna. Here, we characterize the globa...
متن کاملCommunity structure of mussel beds at deep-sea hydrothermal vents
Definition of biogeographic provinces, patterns of species distributions on local and regional scales, species richness, and relative abundances are all basic ecological measures, yet they are largely unknown for deep-sea hydrothermal vent ecosystems. Without an appreciation of biogeographic and biodiversity patterns, it is difficult to understand the evolutionary and ecological processes that ...
متن کاملCutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hyd...
متن کامل